7 research outputs found

    Towards the integration of modern power systems into a cyber–physical framework

    Get PDF
    The cyber–physical system (CPS) architecture provides a novel framework for analyzing and expanding research and innovation results that are essential in managing, controlling and operating complex, large scale, industrial systems under a holistic insight. Power systems constitute such characteristically large industrial structures. The main challenge in deploying a power system as a CPS lies on how to combine and incorporate multi-disciplinary, core, and advanced technologies into the specific for this case, social, environmental, economic and engineering aspects. In order to substantially contribute towards this target, in this paper, a specific CPS scheme that clearly describes how a dedicated cyber layer is deployed to manage and interact with comprehensive multiple physical layers, like those found in a large-scale modern power system architecture, is proposed. In particular, the measurement, communication, computation, control mechanisms, and tools installed at different hierarchical frames that are required to consider and modulate the social/environmental necessities, as well as the electricity market management, the regulation of the electric grid, and the power injection/absorption of the controlled main devices and distributed energy resources, are all incorporated in a common CPS framework. Furthermore, a methodology for investigating and analyzing the dynamics of different levels of the CPS architecture (including physical devices, electricity and communication networks to market, and environmental and social mechanisms) is provided together with the necessary modelling tools and assumptions made in order to close the loop between the physical and the cyber layers. An example of a real-world industrial micro-grid that describes the main aspects of the proposed CPS-based design for modern electricity grids is also presented at the end of the paper to further explain and visualize the proposed framework

    Optimal entire eigenstructure assignment of discrete-time linear systems

    No full text

    Model-based two-layer control design for optimal power management in wind-battery microgrids

    No full text
    In this paper, a comprehensive model in Hamiltonian form of a Microgrid (MG) composed of heterogeneous components, i.e. wind turbine generator, battery storage and local loads together with their power conversion units, is developed. The proposed model analytically captures the energy conversion capabilities of different sustainable energy sources. Based on this model description, novel primary (nonlinear PI) and secondary controllers (receding horizon) are proposed that ensure boundedness of the currents injected by each energy source and optimal power management operation of the entire MG. Furthermore, closed-loop stability analysis is rigorously proven for both primary and secondary control loops taking into account the accurate Hamiltonian description of the whole MG that includes the energy conversion characteristics. Detailed simulation results of the entire MG connected to a weak grid and operating in islanded mode are provided to validate the proposed model, the control design and the stability analysis under various scenarios

    Gender-dependent variations in optical illusions: evidence from N400 waveforms

    No full text
    Objective: The cognitive mechanisms (especially the gender-related ones) underlying optical illusion processing remain elusive. Since the N400 component of event-related potentials (ERPs) is an index of the semantic integration of information processing tasks, the present study focuses on gender-related differences in N400 waveforms elicited during the reasoning process applied to reach a valid conclusion of optical illusions engaging working memory (WM). Approach: Fifty-one healthy participants (28 males, age = 34.25 years ± 10.25, years of education = 16.00 years ± 1.78; and 23 females, age = 33.43 ± 7.93, years of education = 15.56 ± 1.82) were measured. The N400 ERP component was evoked by 39 optical illusions adjusted to induce WM. We compared brain activation patterns while participants maintained conclusions of the optical illusions in WM. The N400 of ERPs was recorded during the WM phase, during which participants were required to draw a logical conclusion regarding the correctness of the optical illusions. Main results: Analysis revealed that females compared to males exhibited significantly increased N400 amplitudes located at parietal and occipital sites, whereas males exhibited significantly higher N400 amplitudes located at frontal areas. Furthermore, females compared to males demonstrated significantly prolonged latencies of the N400 component located at right frontotemporal abductions. Significance: These results suggest that coupling of optical illusions with WM engages distinct gender-related variations of brain semantic processing as reflected by the N400 ERP component. Based on the dual process account, our study gives support to the notion that women tend to employ a more deliberate and slower semantic reasoning than the men who tend to employ an automatic and fast one. Topographically, within the network sub-serving the semantic operation, the posterior brain areas responsible for sensorimotor integration-related processes elicit a greater brain activation among females while the anterior brain areas responsible for control and storage/retrieval operation elicit a greater brain activation among males. © 2020 Institute of Physics and Engineering in Medicin
    corecore